lunes, 28 de octubre de 2013

teorema relativos a infinitesimos y limites

Infinitésimos

Una sucesión an es un infinitésimo si es una sucesión convergente que tiene por límite cero.
lim an = 0
Ejemplo: 
Las sucesiones:
infinitésimos
son infinitésimos porque:
límite
límite
límite

Propiedades de los infinitésimos

1. La suma de dos infinitésimos es un infinitésimo.
2. El producto de un infinitésimo por una sucesión acotada es un infinitésimo.
3. El producto de infinitésimos es un infinitésimo.
4. El producto de una constante por un infinitésimo es un infinitésimo.
5.Si una sucesión an converge a L, la sucesión (an − L) es un infinitésimo.
6. Si una sucesión an es divergente, su inversa es un infinitésimo.

Teoremas sobre límites

Teorema

Unicidad del límite de una función

Si una función tiene límite es único.

H) Existe limx->af(x)=b
T) b es único
Demostración
La demostración se hace por reducción al absurdo.
Suponemos que f(x) tiene dos límites distintos b y c, cuando x tiende a a.
Suponemos que b > c.
limx->af(x)=b => (por def. de límite) para todo Eb,ε existe un E*a,δ1 / para todo x perteneciente al E*a,δ1 f(x) pertenece al Eb,ε.
limx->af(x)=c => (por def. de límite) para todo Ec,ε existe un E*a,δ2 / para todo x perteneciente al E*a,δ2 f(x) pertenece al Ec,ε.
Consideremos un ε tal que Eb,ε ∩ Ec,ε = Ø.
Entornos de b y c disjuntos
Queremos que c+ε < b-ε => ε < (b - c)/2
Sea δ = min {δ1,δ2}
Para todo x perteneciente al E*a,δ se cumple
  • f(x) pertenece a Eb,ε
  • f(x) pertenece a Ec,ε
Absurdo, pues f(x) no puede pertenecer a dos entornos disjuntos.
Absurdo de suponer b ≠ c.
Por lo tanto b = c.

Definición

Límites laterales

Límite de f(x) en el punto a por la derecha :
limx->a+f(x)=b <=> para todo ε > 0 existe δ > 0 / para todo x perteneciente a (a,a + δ) |f(x) - b| < ε.
Límite de f(x) en el punto a por la izquierda :
limx->a-f(x)=b <=> para todo ε > 0 existe δ > 0 / para todo x perteneciente a (a - δ,a) |f(x) - b| < ε.
Nota: x->a+ indica que x tiende a a por la derecha, es decir que x pertenece al entorno (a,a + δ).
x->a- indica que x tiende a a por la izquierda, es decir que x pertenece al entorno (a - δ,a).
A veces las funciones son discontinuas o no están definidas en un punto a, pero son continuas a uno y otro lado. En estos casos, el límite por la izquierda puede ser distinto del límite por la derecha.

Ejemplo

f(x) =  x2 si x <= 2
        -2x + 1 si x > 2
Ilustración geométrica de los límites laterales   limx->2-f(x)=4
limx->2+f(x)=-3
No existe limx->2f(x)

limites infinitesimos

 INFINITÉSIMO
Se dice que la función f es un infinitésimo cuando x → a, si se verifica 
Es decir, un infinitésimo es una función cuyo límite es cero cuando la variable independiente x se aproxima hacia el valor x = a, o dicho de otra forma, una función cuyos valores se aproximan tanto más al cero cuanto más se aproxima x hacia el valor a.
Por tanto, en el concepto de infinitésimo hay que tener presente no sólo la función f, sino también el punto a. La función f es infinitésimo,en las proximidades del punto a. Suele decirse que es infinitésimo en x=a.

limites infinitos y propiedades

Límite infinito

Una función f(x) tiene por límite +∞ cuando x → a, si fijado un número real positivo K > 0 se verifica que f(x) > k para todos los valores próximos a a.




límite


Límite en el infinito

Límite menos infinito

Una función f(x) tiene por límite -∞ cuando tiende a, si fijado un número real negativo K < 0 se verifica que f(x) < k para todos los valores próximos a a.


Función
Límite en menos infinito


PROPIEDADES DE LOS LÍMITES

leyes de limites

El límite de una función en un punto es único. (Se puede decir lo mismo diciendo: Una función no puede tener dos límites diferentes en un mismo punto).
Sean f y g dos funciones. Si el límite de la función f, en el punto x = a, es l, y el límite de la función g, en el punto x = a, es m, entonces el limite de la función f + g, en el punto x = a, es l + m. (Esto se expresa de manera rápida diciendo: El límite de la suma es igual a la suma de los límites).
lim (f(x) + g(x)) = lim f(x) + lim g(x)
Sean f y g dos funciones. Si el límite de la función f, en el punto x = a, es l, y el límite de la función g, en el punto x = a, es m, entonces el limite de la función f * g, en el punto x = a, es l * m. (Esto se expresa de manera rápida diciendo: El límite del producto es igual al producto de los límites).
lim (f(x).g(x)) = lim f(x) . lim g(x)
Sean f y g dos funciones. Si el límite de la función f, en el punto x = a, es l, y el límite de la función g, en el punto x = a, es m (distinto de cero), entonces el limite de la función f / g, en el punto x = a, es l / m. (Esto se expresa de manera rápida diciendo: El límite del cociente es igual al cociente de los límites).
lim (f(x)/g(x)) = lim f(x) / lim g(x)
Sean f y g dos funciones. Si el límite de la función f, en el punto x = a, es l, y el límite de la función g, en el punto x = a, es m, entonces el limite de la función f g , en el punto x = a, es l m.
lim (f(x))g(x) = lim (f(x))lim g(x)
Sean f y g dos funciones. Si el límite de la función f, en el punto x = a, es l, y el límite de la función g, en el punto x = a, es m, entonces el limite de la función f(g(x)) (suponiendo que tenga sentido)  en el punto x = a, es l.

domingo, 13 de octubre de 2013

que es funcion

En matemática, una función (f) es una relación entre un conjunto dado X (llamado dominio) y otro conjunto de elementos Y(llamado codominio) de forma que a cada elemento x del dominio le corresponde un único elemento f(x) del codominio (los que forman el recorrido, también llamado rango o ámbito).

dominio y contadominio

El dominio de una función está ligado a la definición de función.
Una función es una relación que asigna a cada elemento de un conjunto X uno y sólo un elemento de un conjunto Y.

Al conjunto X se le llama dominio de la función y a sus elementos se les denomina también valores de entrada. La variable "x" es considerada la variable independiente y en el sistema coordenado se suele graficar en el eje horizontal.

El conjunto Y recibe el nombre de Contra dominio o Rango de la función y son los valores de salida. La variable "y" es la variable dependiente (depende de "x") y se grafica en el eje vertical, se le considera el valor de la función. Por eso se pone        y = f (x)
Resulta sumamente práctico tener siempre en cuenta la definición de función, los conceptos de valores de entrada y de salida

Que es rango



Rango o recorrido de una función

Se denomina rango o recorrido de una función al conjunto
 de los valores reales que toma la variable y o f(x).
función















Conjunto inicial Conjunto final
Dominio  Rango o recorrido o conjunto imagen

Cálculo del rango o recorrido

Para calcular el rango de una función tenemos 
que hallar el dominio de su función inversa.
función
operaciones
operaciones
operaciones
operaciones
R = R − {2}

tipos de funciones


FUNCIONES POLINOMICAS


    FUNCIÓN LINEAL

Es una función de la forma f(x) = mx + b, donde m es la pendiente y b es la abscisa donde la recta intercepta al eje. La grafica que se origina es una línea recta, si m es positiva la recta se inclina hacia la derecha y si m es negativa la recta se inclina hacia la izquierda.

EJEMPLO:



FUNCIÓN CONSTANTE

Es una función de la forma f(x) = k, donde k es una constante. La grafica que se origina es una línea recta paralela al eje x.
El dominio de la función constante son todos los números reales  y el rango es un conjunto unitario formado por el elemento imagen de todos los elementos del dominio.


EJEMPLO:


Ø  FUNCIÓN CUADRÁTICA

Es una función de la forma f(x) = ax2+ bx +c, donde a,b,c y son números reales. La grafica de la función cuadrática es una curva llamada parábola; si a es positiva, la grafica abre hacia arriba y si a es negativa la grafica abre hacia abajo.
La ecuación algebraica tiene el 2 como máximo exponente de la variable.

EJEMPLO: 

    FUNCIÓN POLINOMICA

Una función Polinómica es de la forma f(x) = anxn+an-1xn-1+…+a donde an,an-1,…,a son constantes reales y n es numero entero no negativo que indica el grado de p(x), siempre que an≠0.

Ejemplo: 

Ø 
FUNCIONES ESPECIALES


FUNCIÓN VALOR ABSOLUTO

La función valor absoluto se define como:



Es de la forma f(x) = IxI, cuyo dominio son los reales y el rango son los reales mayores o iguales a cero. La grafica que se obtiene es  una curva en forma de v. 

EJEMPLO: 


Ø  
Ø FUNCIÒN RAIZ CUADRADA

Es una función que asigna a un argumento su raíz cuadrada positiva. Es de la forma f(x) = √x , donde  el dominio de la función son los valores de x que hacen que el radicando sea positivo y el rango son los reales mayores o iguales a cero. La grafica que se obtiene es una curva ascendente que está por encima del eje x

Ejemplo: 


Ø     FUNCiÓN RACIONAL

Es una función de la forma f(x) = p(x)/q(x) , donde p(x) y q(x) son polinomios y q(x)≠0. La función racional no está definida para valores de x en el cual q(x) se hace diferente de cero, este valor al representarlo gráficamente es una asíntota. La grafica que se obtiene son curvas interrumpidas por la asíntota.

Ejemplo: 

Ø  FUNCIONES TRASCENDENTALES


    FUNCIÓN EXPONENCIAL

Es una función de la forma f(x) = ax, donde a>o y a≠1 .cuyo  dominio son los números reales y el rango son los reales mayores que cero. La grafica que se obtiene es una curva ascendente si a>1 y descendente si  o<a<1.

Ejemplos:

Ø  FUNCIÓN LOGARÍTMICA

Es una función inversa a la función exponencial, es de la forma 
f(x) = logax, donde a>o y a≠1. La grafica que se obtiene es una curva simétrica a la función exponencial.

Ejemplos:

Ø  FUNCIÓN TRIGONOMÉTRICA

Las funciones trigonométricas surgen de estudiar el triangulo rectángulo y observar que las razones (cocientes) entre las longitudes de dos lados cualesquiera dependen del valor de los ángulos del triangulo. Se distinguen seis tipos de funciones trigonométricas, Las cuales cada una de ellas tiene su dominio, rango, periodo y su gráfica es distinta, como son:

Ejemplos: 


f(x) = sen x

f(x) = cos x

f(x) = tan x

f(x) = cot x

f(x) = sec x

f(x) = cscx







3 ejemplos


jueves, 10 de octubre de 2013

funciones tracendentes

En las funciones trascendentes la variable independiente figura como exponente, o como índice de la raíz, o se halla afectada del signo logaritmo o de cualquiera de los signos que emplea la trigonometría.

Las  funciones que no son algebraicas se llaman funciones trascendentes.
Son funciones trascendentales elementales 
  • Función exponencial: 
f(x)=ax; a > 0, a ≠ 1.
  • Función logarítmica:
f(x)=loga(x); a > 0, a ≠ 1. Es inversa de la exponencial.
  • Funciones trigonométricas:
También llamadas circulares
f(x)=sen(x); f(x)=cos(x); f(x)=tg(x); f(x)=cosec(x); f(x)=sec(x) y f(x)=cotg(x)

funciones inversas

Funciones inversas

Dada una función f(x), su inversa es otra función, designada por f-1(x) de forma que se verifica: si f(a) = b, entonces f-1(b) = a

· Pasos a seguir para determinar la función inversa de una dada:

_ Despejar la variable independiente x.

_ Intercambiar la x por la y, y la y por la x.

La función así obtenida es la inversa de la función dada.

Las gráficas de dos funciones inversas son simétricas respecto de la bisectriz del 1.er cuadrante y del 3.er cuadrante.


Ejercicio:
 Hallar la función inversa de y = 5x - 2, y representar las gráficas de ambas funciones en el mismo sistema de ejes.

Resolución:

· Se intercambian ambas variables: